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Abstract

Gabor wavelet transform can be used for de-noising impulsive signals measured from faulty bearings. However, it has

been a challenging task to select proper wavelet parameters. This paper reports a method to guide the selection process by a

smoothness index. The smoothness index is defined as the ratio of the geometric mean to the arithmetic mean of the

wavelet coefficient moduli of the vibration signal. For the signal contaminated by Gaussian white noise, we have shown

that the modulus of the wavelet coefficients follows Rician distribution. Based on this observation, we then prove that the

smoothness index converges to a constant number (0.8455y) in the absence of mechanical faults or for very low signal to

noise ratio. This result provides a dimensionless smoothness index upper bound corresponding to the most undesirable

case. We have also shown that the smoothness index value decreases in the presence of impulses with properly selected

parameters. The proposed method has been successfully used to de-noise both simulated and experimental signals.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

With the advances in digital signal processing methods, there has been an increasingly strong interest
in the application of vibration analysis techniques for fault detection and diagnosis of rotating machinery
elements. Bearings are among widely used and probably the most critical elements. As such, bearing fault
detection and diagnosis has been the subject of extensive research [1–4]. Bearing faults usually appear as
cracks or spalls on the surfaces of the bearing especially on the roller, outer race or inner race. When
these faults come in contact with mating surfaces during the operation of the bearing, they generate
impulses which are the main features to be detected through vibration measurement. The frequency of
repetition of these impulses can be related to the rotational frequency of the shaft and the geometry of the
bearing. A comprehensive analytical model for the vibration of a roller bearing with a single fault has
been described by McFadden and Smith [1]. Comparing the analytical model with the measured vibration
may lead to an effective method for fault detection. For this purpose, the fault features should be made
evident via proper signal processing means as the measured signals are often contaminated by intensive
noise, especially when the faults are at their early stages of development. As a result, a major step in fault
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a(t) local signal to noise ratio, which is equal
to m(t)/n

As(Gs) arithmetic (geometric) mean of a series
A amplitude of the simulated impulse
Ei(x) exponential integral
fX,Y(x,y) joint probability density of random

variables X and Y

f0 modulation frequency of the mother
Gabor wavelet

FZ(z) cumulative probability distribution of
random variable Z

1F1 confluent hypergeometric function
Fx( � ) Fourier transform of a function with

respect to variable x

I0 modified Bessel function of first kind and
zeroth order

rG/A ratio of the geometric mean to the
arithmetic mean

Re (Im) real (imaginary) part of a complex value
s scale
t time index

u wavelet translation index
u(t) unit step function
v(t) vibration signature of a faulty bearing in

the absence of noise
V(t) measured vibration
Wf(s,u) wavelet transform of the function f(t)

associated with scale s and translation
index u

W s;s
f ðuÞ Gabor wavelet transform of a signal f(t)

associated with scale s and shape factor s
b structural damping coefficient
g Euler’s constant
Z(s,s) smoothness index as a function of scale s

and shape factor s
m(t) modulus of the wavelet coefficients cal-

culated for the noise-free vibration signal
n2 noise variance
s shape factor
c(t) mother wavelet
cs,u(t) daughter wavelet associated with scale s

and translation index u

C(n) Euler’s psi function
o0 excited resonance frequency
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detection is de-noising. One such de-noising method is filter based. With this approach, high signal to
noise ratio frequency band of the vibration signal passes through the filter whereas other frequency
components are eliminated. Consequently the filtered signal should display the features of a faulty
bearing more clearly. Bandpass filtering is also applied as a preprocessing step in the high frequency
resonance technique [4]. Besides the filter-based de-noising, wavelet threshold de-noising such as the
‘‘soft-thresholding’’ method proposed by Donoho and Johnstone [5,6] has also been used for bearing
vibration de-noising [7,8].

Though the comparison of the two methods seems in favor of the filter-based approach [9,10], its
performance largely relies on the proper selection of parameters, i.e., the center frequency and the
bandwidth of the filter. Several studies have attempted to address related issues by choosing proper
parameters of a daughter Morlet wavelet and by applying the wavelet filter-based de-noising method
[9–12]. In this study, we propose a new criterion to specify the center frequency and bandwidth by adjusting
the scale and shape factor of the Gabor wavelet. The Gabor wavelet is used because of optimal time and
frequency resolution [13]. The proposed criterion is reflected by the smoothness index (SI), which is the
ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli. We will demonstrate
that the envelope of the bandpass filtered signal or the modulus of the wavelet coefficients follows the
Rician [14] distribution. This result is later used to prove that the smoothness index converges to a constant
number (0.8455y) in the absence of mechanical faults or when the signal to noise ratio of the vibration
signal is very low. It is also shown that the smoothness index value decreases in the presence of
fault signatures with properly selected parameters. As our purpose is to detect or reveal the fault signature,
the selection of the Gabor wavelet parameters can be guided by the process of minimizing smoothness
index.

This paper is organized as follows: In Section 2 we provide a brief introduction to wavelet transform, the
idea of wavelet filter-based de-noising and the envelope signal to be used in the de-noising process. Section 3
presents the smoothness index and explains its application for the selection of the scale and the shape factor.
The experimental results are given in Section 4. Section 5 concludes the paper.



ARTICLE IN PRESS
I.S. Bozchalooi, M. Liang / Journal of Sound and Vibration 308 (2007) 246–267248
2. Continuous wavelet transform (CWT) and envelope detection

The CWT of f(t) with respect to a wavelet c(t)is defined as [13,15]

W f ðs; uÞ ¼

Z þ1
�1

f ðtÞ
1ffiffi
s
p c�

t� u

s

� �
dt, (1)

where s and u are real and asterisk denotes complex conjugate.
Eq. (1) can be written in a more compact form using:

cs;uðtÞ ¼
1ffiffi
s
p c

t� u

s

� �
. (2)

On the other hand, the convolution of two signals h(t) and x(t) is defined as

hðtÞ � xðtÞ ¼

Z 1
�1

hðtÞxðt� tÞdt. (3)

We have [15]

f ðuÞ � c�s;0ð�uÞ ¼

Z þ1
�1

f ðtÞ
1ffiffi
s
p c�

t� u

s

� �
dt ¼W f ðs; uÞ (4)

Denoting Fourier transform of a function with respect to the variable x by Fx, we obtain

Fu½W f ðs; uÞ� ¼ Fu½f ðuÞ�Fu½c
�
s;0ð�uÞ�. (5)

According to Eq. (5) for a fixed scale we can consider wavelet transform Wf(s,u) as the output of a filter with
impulse response c�s;0ð�uÞ and input f(u). In this paper, we choose Gabor wavelet as the mother wavelet. This
wavelet is obtained through frequency modulation of a Gaussian window. Gaussian windows are used because
of their optimal time and frequency energy concentration, proved by the Heisenberg Uncertainty theorem [13].
Gabor wavelet is defined as

cðtÞ ¼ c e�s
2t2 ei2pf 0t. (6)

In this paper, we choose constant c as

c ¼

ffiffiffiffiffiffiffi
8s2

p
4

r
, (7a)

so that Z 1
�1

ReðcðtÞÞ2 dt �

Z 1
�1

ImðcðtÞÞ2 dt � 1. (7b)

To elaborate on this, we writeZ 1
�1

ReðCðtÞÞ2 dt ¼

Z 1
�1

½c e�s
2t2 cos 2pf 0t�

2 dt ¼ c2
Z 1
�1

e�2s
2t2 1þ cos 4pf 0t

2
dt

¼
c2

2

Z 1
�1

e�2s
2t2 dtþ

Z 1
�1

e�2s
2t2 cos 4pf 0tdt

� �
. ð8aÞ

From Ref. [16] the above statement can be written as

c2

2

ffiffiffiffiffiffiffi
p
2s2

r
þ e�2ðpf 0Þ

2=s2
ffiffiffiffiffiffiffi
p
2s2

r� �
. (8b)



ARTICLE IN PRESS
I.S. Bozchalooi, M. Liang / Journal of Sound and Vibration 308 (2007) 246–267 249
Similarly Z 1
�1

ImðCðtÞÞ2 dt ¼

Z 1
�1

c e�s
2t2 sin 2pf 0t

h i2
dt ¼ c2

Z 1
�1

e�2s
2t2 1� cos 4pf 0t

2
dt

¼
c2

2

Z 1
�1

e�2s
2t2 dt�

Z 1
�1

e�2s
2t2 cos 4pf 0tdt

� �
¼

c2

2

ffiffiffiffiffiffiffi
p
2s2

r
� e�2ðpf 0Þ

2=s2
ffiffiffiffiffiffiffi
p
2s2

r� �
. ð8cÞ

The last term inside the bracket in Eqs. (8b) and (8c) is very small for f0X1 and sp1, which can be

neglected. Hence, for c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8s2=p4

p
the above leads toZ 1

�1

ReðcðtÞÞ2 dt �

Z 1
�1

ImðcðtÞÞ2 dt �
c2

2

ffiffiffiffiffiffiffi
p
2s2

r
¼ 1. (8d)

According to Eqs. (5) and (6), we have

Fu½W ðs; uÞ� ¼
ffiffi
s
p

F u½f ðuÞ�ĉ
�
ðsf Þ, (9)

where ĉðf Þ is the Fourier transform of c(t) given as

ĉðf Þ ¼
Z 1
�1

c e�s
2t2 ei2pf 0t e�i2pft dt ¼ c

ffiffiffiffiffi
p
s2

r
e�ðp

2=s2Þðf�f 0Þ
2

. (10)

Eqs. (9) and (10) show that the wavelet transform at a constant scale acts like a bandpass filtering process
with a Gaussian filter. As explained before, for the properly selected bandwidth and center frequency, this
process results in a signal with higher signal to noise ratio. The bandwidth of this filter is adjusted by the shape
factor s and the center frequency is adjusted by the scale s as illustrated in Fig. 1.

On the other hand, according to Eq. (10) the filtered signal is analytic for ððpf 0Þ
2=s2Þb1 [13]. Therefore, the

modulus of this analytic result provides the envelope of the bandpass filtered signal [12,13]. Denoting the

Gabor wavelet transform of a signal f(t) at scale s and shape factor s by W s;s
f ðuÞ, we have

Envelope of the bandpass filtered f ðtÞ ¼ jW s;s
f ðuÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re ðW s;s

f ðuÞÞ
2
þ Im ðW s;s

f ðuÞÞ
2

q
. (11)

This envelope will later be used in the de-noising process.

3. Ratio of geometric mean to arithmetic mean (G/A ratio) and its implication in parameter selection

3.1. The G/A ratio

The geometric mean of a series is defined as

Gs ¼
YN
n¼1

SðnÞ

 !1=N

for a positive time series S(n) (n ¼ 1, 2, y, N).
Similarly the arithmetic mean of the series is

As ¼
1

N

XN

n¼1

SðnÞ.

We denote the ratio of the two as rG/A, i.e.,

rG=A ¼
Gs

As

. (12)
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Fig. 1. Gabor wavelet in frequency domain for (a) fixed shape factor and different scales (b) fixed scale and different shape factor.
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As AsXGs[17] (equality only holds when S[n] ¼ S[m] for all m and n), rG/A is always between zero and one
for a positive time series. We rewrite geometric mean as follows:

Gs ¼ exp
1

N

XN

n¼1

ln ðSðnÞÞ

 !
. (13)

Then for a continuous function of time, we have

rG=A ¼
exp 1

T

R T

0 ln ðf ðtÞÞdt
h i
1
T

R T

0
f ðtÞdt

, (14)

where f(t) is defined over [0,T].
An important property of G/A ratio is that it approaches unity for flat functions and zero for peaky

functions. In an extreme case, rG/A ¼ 1 if f(t) ¼ constant and rG/AE0 when f(t) is highly impulsive in nature.
The G/A ratio has been used as a measure of spectral flatness in speech signal processing [18].

3.2. The smoothness index and rationale of using it for parameter selection

As mentioned earlier, wavelet transform is to be used as a bandpass filter for noise reduction.
The performance of such a filter depends on the selection of scale and shape factor of the daughter wavelet.
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Measured Signal 

Select discretized scale and 
shape factor ranges  

Wavelet transform the vibration 
data for every combination of 

scale and shape factor  

Calculate the moduli of the wavelet 
coefficients and find SI for every

combination of scale and shape factor

Find the scale and the shape factor 
corresponding to the minimum SI  

Output the above result as 
the de-noised signal 

Find the real part of the wavelet 
coefficients calculated using the 

parameters found in previous step

Fig. 2. Flowchart of the proposed de-noising algorithm.
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For properly selected scale and shape factor, wavelet transform will result in higher coefficient values in the
time interval where the fault generated impulses are located and lower coefficients elsewhere. This way, we can
magnify parts of the signal that are of our interest and suppress the other parts. In other words, it is expected
that the modulus of the wavelet transform forms a more peaky function of time when proper parameters are
used. This is true when the vibration signal contains fault generated impulses. As such, the smoothness index
defined below, can be used as a criterion to select the parameters, namely scale s and shape factor s. Replacing

f(t) in Eq. (14) by W s;s
f ðuÞ

��� ��� given in Eq. (11) yields

Zðs; sÞ ¼
exp 1

T

R T

0
ln ðjW s;s

f ðuÞjÞdu
h i
1
T

R T

0 jW
s;s
f ðuÞjdu

. (15)

More specifically, the best parameters s and s are achieved if Z(s,s) is minimized. Fig. 2 summarizes the
steps of the proposed method.
3.3. Probability density function (pdf) of wavelet coefficient modulus

To assess the behavior of the smoothness index, the statistical characteristics of the wavelet coefficient
modulus are required, which will be detailed in the following. The fault signature resulting from the fault
generated impulse may be expressed as

SðtÞ ¼ A e�bt cosðo0tÞuðtÞ, (16)

where b is the structural damping coefficient, u(t) is a unit step function and o0 is the excited
resonance frequency. Due to the resemblance to a theoretical impulse, ‘‘fault generated impulse’’ or
‘‘impulse’’ is used interchangeably to refer to such signatures hereafter. Assuming such an impulse is generated
each time when a fault comes in contact with the mating surface, we can model the measured vibration
from a faulty bearing as a series of impulses with period Tp which corresponds to the characteristic
fault period:

V ðtÞ ¼
XM

m¼�M

A e�bðt�mTpÞ cos o0ðt�mTpÞuðt�mTpÞ þ wðtÞ ¼ vðtÞ þ wðtÞ, (17)
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where w(t) is continuous white Gaussian noise and v(t) is the impact vibration due to the fault and contains
2M+1 impulses. Wavelet transforming V(t) using Eqs. (1) and (6), we obtain

W s;s
V ðtÞ ¼

Z 1
�1

V ðt0Þ
1ffiffi
s
p c�

t0 � t

s

� 	
dt0 ¼

Z 1
�1

XM
n¼�M

A e�bðt
0�nTpÞ cos o0ðt

0 � nTpÞuðt
0 � nTpÞ

�
cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2�ið2p=sÞðt0�tÞ dt0 þ

Z 1
�1

wðt0Þ
cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2�ið2p=sÞðt0�tÞ dt0. ð18Þ

Substituting

W s;s
v ðtÞ ¼

Z 1
�1

XM
m¼�M

A e�bðt
0�mTpÞ cos o0ðt

0 �mTpÞuðt
0 �mTpÞ

cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2�ið2p=sÞðt0�tÞ dt0, (19)

into Eq. (18) yields

W s;s
V ðtÞ ¼W s;s

v ðtÞ þ
cffiffi
s
p

Z 1
�1

wðt0Þe�ðs=sÞ2ðt0�tÞ2�ið2p=sÞðt0�tÞ dt0, (20)

where W s;s
v ðtÞ is the wavelet transform in the absence of noise. Decomposing the noise-related component into

real and imaginary parts, we obtain

W s;s
w ðtÞ ¼

cffiffi
s
p

Z 1
�1

wðt0Þ e�ðs=sÞ2ðt0�tÞ2�ið2p=sÞðt0�tÞ dt0

¼

Z 1
�1

wðt0Þe�ðs=sÞ2ðt0�tÞ2 cffiffi
s
p cos

2p
s
ðt0 � tÞdt0

� i

Z 1
�1

wðt0Þ e�ðs=sÞ2ðt0�tÞ2 cffiffi
s
p sin

2p
s
ðt0 � tÞdt0. ð21Þ

As both real and imaginary parts in the above equation are linear transforms of Gaussian random variables,
they are Gaussian random variables with zero mean and variance given by

n2 ¼ varðReðW s;s
w ðtÞÞÞ

¼ var

Z 1
�1

wðt0Þ
cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞdt0

� 	

¼ E

Z 1
�1

wðt0Þ
cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞdt0

� �2( )

¼ E

Z 1
�1

wðt0Þ
cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞdt0

� � Z 1
�1

wðt00Þ
cffiffi
s
p e�ðs=sÞ2ðt00�tÞ2 cos

2p
s
ðt00 � tÞdt00

� �
 �

¼ E

Z 1
�1

Z 1
�1

wðt0Þwðt00Þ
cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞ

cffiffi
s
p e�ðs=sÞ2ðt00�tÞ2 cos

2p
s
ðt00 � tÞdt0 dt00


 �

¼

Z 1
�1

Z 1
�1

E wðt0Þwðt00Þ½ �
cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞ

cffiffi
s
p e�ðs=sÞ2ðt00�tÞ2 cos

2p
s
ðt00 � tÞdt0 dt00,

where E is the statistical expectation operator. In the above equation, if t0 6¼t00, E[(w(t0)w(t00] ¼ 0 (w(t0) and
w(t00) are independent). For t0 ¼ t00, n2 is given as follows:

n2 ¼ varðReðW s;s
w ðtÞÞÞ ¼

Z 1
�1

EfwðtÞ0
2
g

cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞ

� �2
dt0

� varðwðtÞÞ

Z 1
�1

cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞ

� �2
dt0. ð22aÞ
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On the other hand, according to Eq. (7b),Z 1
�1

cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞ

� �2
dt0 �

Z 1
�1

cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 sin

2p
s
ðt0 � tÞ

� �2
dt0 � 1.

So we can write

n2 ¼ var ðRe ðW s;s
w ðtÞÞÞ ¼ var ðwðtÞÞ

Z 1
�1

cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 cos

2p
s
ðt0 � tÞ

� �2
dt0

� varðImðW s;s
w ðtÞÞÞ ¼ varðwðtÞÞ

Z 1
�1

cffiffi
s
p e�ðs=sÞ2ðt0�tÞ2 sin

2p
s
ðt0 � tÞ

� �2
dt0 � varðwðtÞÞ. ð22bÞ

According to Eqs. (20) and (22b), W s;s
V ðtÞ is a complex Gaussian random variable, and the real and

imaginary parts of this random variable have means ReðW s;s
v ðtÞÞ and ImðW s;s

v ðtÞÞ, respectively, and variance
equal to the background noise variance.

In order to form the envelope of the wavelet transformed signal, we denote X ðtÞ ¼ ReðW s;s
V ðtÞÞ and Y ðtÞ ¼

ImðW s;s
V ðtÞÞ and obtain

ZðtÞ ¼ jW s;s
V ðtÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ðtÞ2 þ Y ðtÞ2

q
. (23)

Denoting the joint pdf of X(t) and Y(t) by fx,y(x,y), the cumulative probability distribution of Z(t), FZ(z),
can be written as [19]

FZðtÞðzÞ ¼ PðZpzÞ ¼

Z z

y¼�z

Z ffiffiffiffiffiffiffiffiffi
z2�y2
p

x¼�
ffiffiffiffiffiffiffiffiffi
z2�y2
p f X ;Y ðx; yÞdxdy.

The Leibnitz differentiation rule is used to find the pdf of the wavelet coefficient modulus as follows:

q
qz

Z bðzÞ

aðzÞ

f ðx; zÞdx ¼

Z bðzÞ

aðzÞ

qf

qz
dxþ f ðbðzÞ; zÞ

qb

qz
� f ðaðzÞ; zÞ

qa

qz
.

Letting gðy; zÞ ¼
R ffiffiffiffiffiffiffiffiffi

z2�y2
p

x¼�
ffiffiffiffiffiffiffiffiffi
z2�y2
p f X ;Y ðx; yÞdx, we have

f ZðzÞ ¼
q
qz

FZðzÞ ¼
q
qz

Z z

y¼�z

gðy; zÞdy

¼

Z z

�z

q
qz

gðy; zÞdyþ gðz; zÞ � gð�z; zÞ

¼

Z z

�z

q
qz

gðy; zÞdy

and

q
qz

gðy; zÞ ¼
q
qz

Z ffiffiffiffiffiffiffiffiffi
z2�y2
p

x¼�
ffiffiffiffiffiffiffiffiffi
z2�y2
p f X ;Y ðx; yÞdx

¼
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � y2
p f X ;Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � y2

p
; y

� �
þ f X ;Y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � y2

p
; y

� �n o
,

so that

f ZðzÞ ¼

Z z

�z

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � y2

p f X ;Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � y2

p
; y

� �
þ f X ;Y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � y2

p
; y

� �n o
dy. (24)
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According to Eqs. (20) and (21), X(t) and Y(t) are affine transformations of independent Gaussian random
variables. As a result, linear combinations of the two or aX(t)+bY(t) are Gaussian random variables for all
a and b. Consequently we can consider joint normality for X(t) and Y(t) [19]. For this purpose, we define CX,Y
as the covariance of X(t) and Y(t), i.e.,

CX ;Y ¼

Z 1
�1

Z 1
�1

E wðt0Þwðt00Þ
� 

e�ðs=sÞ2ðt0�tÞ2 e�ðs=sÞ2ðt00�tÞ2 cos
2p
s
ðt0 � tÞ sin

2p
s
ðt00 � tÞdt0 dt00 ¼ 0. (25)

Therefore

f X ;Y ðx; yÞ ¼
1

2pn2
e�½ðx�Re ½W s;s

v ðtÞ�Þ
2
þðy�Im ½W s;s

v ðtÞ�Þ
2
�=2n2 . (26)

Now letting [19]

mðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re ðW s;s

v ðtÞÞ
2
þ Im ðW s;s

v ðtÞÞ
2

q
, (27a)

yðtÞ ¼ zðtÞ sin y, (27b)

ReðW s;s
v ðtÞÞ ¼ mðtÞ cos f, (27c)

ImðW s;s
v ðtÞÞ ¼ mðtÞ sin f (27d)

and substituting Eqs. (26) and (27) into Eq. (24), we obtain

f ZðzÞ ¼
1

2pn2

Z p=2

�p=2

z

z cos y
e�½ðz cos y�mðtÞ cos fÞ2þðz sin y�mðtÞ sin f�2=2n2
n

þe�½ð�z cos y�mðtÞ cos fÞ2þðz sin y�mðtÞ sinf�2=2n2
o

z cos ydy

¼
z e� z2þmðtÞ2ð Þ=2n2

2pn2

Z p=2

�p=2
ðezmðtÞ cos ðy�fÞ=n2 þ e�zmðtÞ cos ðyþfÞ=n2Þdy

¼
z e� z2þmðtÞ2ð Þ=2n2

2pn2

Z p=2

�p=2
ezmðtÞ cos ðy�fÞ=n2 dyþ

Z 3p=2

p=2
ezmðtÞ cos ðy�fÞ=n2 dy

 !

¼
z e� z2þmðtÞ2ð Þ=2n2

2pn2

Z 2p

0

ezmðtÞ cos ðy�fÞ=n2 dy ¼
z e�ðz

2þmðtÞ2Þ=2n2

pn2

Z p

0

ezmðtÞ cos ðyÞ=n2 dy,

i.e.,

f ZðzÞ ¼
z e�ðz

2þmðtÞ2Þ=2n2

n2
I0

zmðtÞ
n2

� 	
, (28)

where I0 is the modified Bessel function of the first kind and zeroth order [17] defined as

I0ðkÞ ¼
1

p

Z p

0

ek cos ðyÞ dy.

This is the expression for a Rician distributed random variable. Fig. 3 shows this distribution for different
values of n2 and m(t). Letting H(t) ¼ Z(t)/n and a(t) ¼ m(t)/n and denoting the pdf of the random variable H(t)
by fH(h), Eq. (28) becomes [14]

f HðhÞ ¼ he� h2þaðtÞ2ð Þ=2I0ðaðtÞhÞ. (29)
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3.4. Behavior of smoothness index for different values of local signal to noise ratio (a(t))

As shown in Eq. (19), W s;s
v ðtÞ is a periodic function of time with period Tp. Hence, for a large M, the

smoothness index can be written as

Zðs;sÞ ¼
exp

R ðMþ1ÞTp

�MTp

1
ð2Mþ1ÞTp

lnðjW s;s
V ðtÞjÞdt

h i
1

ð2Mþ1ÞTp

R ðMþ1ÞTp

�MTp
W s;s

V ðtÞ
�� ��dt

�
exp

R Tp

0
1

Tp
E ln ZðtÞð Þ
� 

dt
h i

1
Tp

R Tp

0
E ZðtÞ
� 

dt
. (30)

Replacing Z(t) with H(t)n in Eq. (30) leads to

Zðs; sÞ �
exp ln nþ

R Tp

0
1

Tp
E ln HðtÞð Þ
� 

dt
h i

n
Tp

R Tp

0 E HðtÞ
� 

dt
¼

exp
R Tp

0
1

Tp
E ln HðtÞð Þ
� 

dt
h i

1
Tp

R Tp

0 E HðtÞ
� 

dt
. (31)

The above equation provides a general expression of smoothness index. As mentioned earlier, the
smoothness index approaches zero for signals of impulsive nature. However, the smoothness index behavior
should be analyzed when the signal is corrupted with background noise. More detailed analysis is given in the
following.
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3.4.1. Smoothness index behavior under low local signal to noise ratio

For very low signal to noise ratio, i.e., aðtÞ51, the following holds [17]:

lim
aðtÞh!0

I0ðaðtÞhÞ ¼
1

Gð1Þ
¼ 1. (32a)

From the above result, when a(t) approaches zero, Eq. (29) can be written as

lim
aðtÞ!0

f H ðhÞ ¼ h e�h2=2. (32b)

Eq. (32b) is the expression of Rayleigh distribution. Considering Eq. (32b), (31) can be written as

Zðs;sÞ ¼
exp½EflnðHÞg�

EfHg
, (33)

where H is a Rayleigh distributed random variable. As EflnðHÞg ¼
R1
0

lnðhÞh e�h2=2 dh, we obtain the following
with a change of variable r ¼ h2:

EflnðHÞg ¼

Z 1
0

lnð
ffiffi
r
p
Þ
ffiffi
r
p

e
�r=2 1

2
ffiffi
r
p dr

¼
1

4

Z 1
0

lnðrÞ e�r=2 dr ¼
1

4

Z 1
0

ðln
r

2
þ ln 2Þ e�r=2 dr

¼
1

4

Z 1
0

ln
r

2
e�r=2 drþ ln 2

Z 1
0

e�r=2 dr

� �

¼
1

4
2

Z 1
0

ln
r

2
e�r=2 d

r

2
þ 2 ln 2

Z 1
0

e�r=2 d
r

2

� �

¼
1

4
�2gþ 2 ln 2½ � ¼ �

1

2
gþ ln

1

2

� 	
, ð34aÞ

where g ¼ lims!1

Ps
m¼1ð1=mÞ � ln ðsÞ

� �
¼ 0:5772156649 . . . is the Euler’s constant.

In addition, the denominator of Eq. (33) can be written as [16]

EfHg ¼

Z 1
0

hf HðhÞ ¼

Z 1
0

h2 e�h2=2 dh ¼

ffiffiffi
p
2

r
. (34b)

Substituting Eqs. (34a) and (b) into Eq. (33) yields

lim
aðtÞ!0

Zðs; sÞ ¼
exp � 1

2
gþ ln 1

2

� �� �
ffiffip
2

p ¼ 0:845501287 . . . . (35)

According to Eq. (35), for very low signal to noise ratio or in the absence of any faults where the vibrations
behave randomly, the smoothness index approaches a constant number.

3.4.2. Smoothness index behavior under higher local signal to noise ratio

In this section, we analyze the expected value and the expected logarithm of a Rician distributed random
variable for a larger a(t). The mean of such a random variable with distribution shown in Eq. (28) is [14]

EfZðtÞg ¼ n
ffiffiffi
2
p

G
3

2

� 	
1F 1 �

1

2
; 1;�

mðtÞ2

2n2

� 	
, (36)

where 1F1 is a confluent hypergeometric function [17]. According to Ref. [17, Eq. (13.1.5)], 1F1 can be
expressed as

1F 1 �
1

2
; 1;�

mðtÞ2

2n2

� 	
¼

Gð1Þ
Gð3=2Þ

mðtÞ2

2n2

� 	1=2

1þO
mðtÞ2

2n2

� 	�1 !" #
.
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Substituting the above equation into Eq. (36), we obtain

EfZðtÞg ¼ n
ffiffiffi
2
p

G
3

2

� 	
Gð1Þ

Gð3=2Þ
mðtÞ2

2n2

� 	1=2

1þO
mðtÞ2

2n2

� 	�1 !" #

¼ mðtÞ 1þO
mðtÞ2

2n2

� 	�1 ! !
, ð37Þ

where O(x) is the order of the argument x. In the above equation we used the relation G(1) ¼ 1.
As a result, as a(t) ¼ m(t)/n increases, the mean of Z(t) approaches m(t) or the modulus of the wavelet

coefficients of the noise-free vibration signal at a rate in the order of (m(t)/2n2)�1.
Moreover, considering a0ðtÞ ¼ aðtÞ=

ffiffiffi
2
p

and H 0ðtÞ ¼ HðtÞ=
ffiffiffi
2
p

, Eq. (29) can be written as

f H 0 ðh
0
Þ ¼ 2h0 e�ðh

02
þa0ðtÞ2Þ I0ð2a0ðtÞh0Þ. (38)

From the above expression we find the expected logarithm of H0(t) as follows:

EflnðH 0ðtÞÞg ¼

Z 1
0

2h0 ln h0 e�ðh
02
þa0ðtÞ2ÞI0ð2a0ðtÞh0Þdh0

¼ 2e�a0ðtÞ2
Z 1
0

h0 ln h0 e�h0
2

I0ð2a0ðtÞh0Þdh0. ð39Þ

On the other hand I0(2a0(t)h0) can be expressed as [17]

I0ð2a0ðtÞh0Þ ¼
X1

k¼0

ða0ðtÞh0Þ2k

k!Gðk þ 1Þ
. (40)

Substituting Eq. (40) into Eq. (39), we obtain

Efln ðH 0ðtÞÞg ¼ 2e�a0ðtÞ2
Z 1
0

h0 ln h0 e�h0
2 X1

k¼0

ða0ðtÞh0Þ2k

k!Gðk þ 1Þ
dh0

¼ 2e�a0ðtÞ2
X1
k¼0

a0ðtÞ2k

k!Gðk þ 1Þ

Z 1
0

ln h0 e�h0
2

h0
2kþ1

dh0. ð41Þ

Letting r ¼ h02 yieldsZ 1
0

ln h0 e�h0
2

h0
2kþ1

dh0 ¼

Z 1
0

1

4
ln r e�rrk

ffiffi
r
p 1ffiffi

r
p dr ¼

1

4

Z 1
0

ln r e�rrk dr.

From Eq. (4.352.1) in Ref. [16], we get

1

4

Z 1
0

ln r e�rrk dr ¼
1

4
Gðk þ 1ÞCðk þ 1Þ, (42)

where C(n) is the Euler’s psi function defined as CðnÞ ¼ �gþ
Pn�1

k¼1k
�1 and g as mentioned before is the

Euler’s constant. Replacing the integral of Eq. (41) with Eq. (42) leads to

Efln ðH 0ðtÞÞg ¼ 2 e�a0ðtÞ2
X1

k¼0

a0ðtÞ2k

k!Gðk þ 1Þ

1

4
Gðk þ 1ÞCðk þ 1Þ ¼

1

2
e�a0ðtÞ2

X1

k¼0

a0ðtÞ2kCðk þ 1Þ

k!
. (43)

It is proven in Ref. [20] that

e�a0ðtÞ2
X1

k¼0

a0ðtÞ2kCðk þ 1Þ

k!
¼ ln ða0ðtÞ2Þ � Eið�a0ðtÞ2Þ, (44)

where Ei(x) is the exponential integral, defined as

EiðxÞ ¼ �

Z 1
�x

e�t

t
dt.
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Substituting Eq. (44) in Eq. (43) results in

Efln ðH 0ðtÞÞg ¼
1

2
ln ða0ðtÞ2Þ �

1

2
Eið�a0ðtÞ2Þ. (45)

As a0(t)2 increases, the exponential integral in Eq. (45) approaches zero. Considering the relations a0ðtÞ ¼

mðtÞ=n
ffiffiffi
2
p

and H 0ðtÞ ¼ ZðtÞ=n
ffiffiffi
2
p

, we obtain

E ln
ZðtÞ

n
ffiffiffi
2
p

� 	
 �
¼ ln

mðtÞ

n
ffiffiffi
2
p

� 	
�

1

2
Ei �

mðtÞ

n
ffiffiffi
2
p

� 	2
 !

) E lnðZðtÞÞ
� 

¼ lnðmðtÞÞ �
1

2
Ei �

mðtÞ

n
ffiffiffi
2
p

� 	2
 !

. ð46Þ

Consequently, as the local signal to noise ratio or a(t) increases, the expected logarithm of Z(t) approaches
ln (m(t)) at a rate specified by the second term of the above equation. Substituting Eqs. (37) and (46) in
Eq. (30) yields:

Zðs; sÞ ¼
exp 1

Tp

R Tp

0 ln mðtÞð Þ � 1
2
Ei � mðtÞ

n
ffiffi
2
p

� �2� 	
dt

� �
1

Tp

R Tp

0 mðtÞ 1þO mðtÞ
n
ffiffi
2
p

� ��2� 	� 	
dt

. (47)
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Eq. (47) reveals the degree of vigilance of the smoothness index to the background noise intensity.
According to this equation, as a(t) ¼ m(t)/n increases, smoothness index approaches its noise-free environment
(pure impulsive vibration) level which is closer to zero due to the impulsive nature of the faulty bearing
vibration.
3.5. Effect of wavelet parameters on smoothness index

Fig. 4a shows the wavelet coefficient moduli associated with different scales for a constant shape factor.
These moduli are calculated for a single noise-free simulated impulse. The scale corresponding to resonance
frequency is 16. As one can see, the magnitude of the wavelet coefficient modulus at scale 16 is the highest of
all the scales for all samples. Since noise variance n2 remains constant as shown in Eq. (22b), the local signal to
noise ratio, a(t) ¼ m(t)/n, increases and according to Eq. (47) the smoothness index approaches its noise-free
environment level. This was also expected intuitively—it is well known that the resonance frequency band
corresponds to the high signal to noise ratio frequency region.

As shown in Fig. 5, the lowest smoothness index appears at a scale very close to the scale associated with
resonance frequency which is in agreement with the above explanations. The effect of shape factor s can also
be explained in a similar manner. Fig. 4b shows the modulus of the wavelet coefficients at the scale associated
with resonance frequency for different shape factor values. As one can see, by decreasing the shape factor, the
magnitude of the wavelet coefficient modulus increases in most of sampling points whereas again according to
Eq. (22b) the noise variance remains constant. As explained earlier, this in fact results in a higher local signal
to noise ratio. To illustrate, we consider Fig. 6. Figs. 6a and b show the power spectral density (PSD) of the
simulated signal of Fig. 8a with different noise intensity levels. Fig. 6 shows that increasing noise leads to a
narrower high signal to noise ratio band in the frequency domain. This means that a smaller shape factor
should be chosen to make the bandwidth of the filter narrower. However, wavelet transform is the weighted
averaging and lowering the shape factor s increases this averaging effect which results in a flatter signal with a
higher signal to noise ratio. This phenomenon can also be seen in Fig. 4b. Besides, this smoothing effect causes
the neighboring impulses to alias. It should also be noted that the decrease in s has decreasing or advert
influence on the wavelet coefficients through the constant c given in Eq. (7a). This effect is stronger for smaller
shape factors.

Considering an extreme case where the bandwidth of the filter is extremely narrow (very small shape factor)
and only the center frequency could pass, the corresponding envelope signal would be a flat function. On the
other hand, for very large bandwidth (large shape factor) all the frequency components can pass through the
filter and no noise reduction could take place. Hence the proper parameter is obtained when a desirable
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balance between the increase of signal to noise ratio and flatter time signal is achieved so that the fault
generated impulses can be better identified from the result.
3.6. Comparison of the smoothness index minimization method with the kurtosis maximization criterion

As detailed earlier, the proposed smoothness index can quantify the impulsiveness of the bandpass filtered
signal and hence be used as a criterion to guide the search for better wavelet parameters. A similar criterion is
kurtosis which is defined as follows:

KurtðhÞ ¼
EfðH � EfHgÞ4g

EfðH � EfHgÞ2g2
� 3, (48)

where H is a random variable. This index is a measure of non-Gaussianity [21] of a dataset and has higher
values for signals of impulsive nature. Accordingly, kurtosis has been widely employed in fault diagnosis
research. As the bandpass filtering is usually a preprocessing step for envelope spectrum analysis, it has been
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proposed [3] that the proper bandpass filter be found by maximizing the kurtosis of the envelope of the filtered
signal. Kurtosis of the filtered signal has also been maximized for bandpass filter adjustment [11].

Though the kurtosis-based method has its merits, it is very sensitive to the outliers in the data. This may lead
the parameter selection algorithm to the wrong frequency bands of the measured vibration and consequently
result in poor de-noising performance. Such a drawback may be better illustrated using an example. Fig. 7
shows simulated white Gaussian noise consisting of 4000 sampling points. This dataset also contains one
outlier, purposely added to the data. Clearly, a robust indicator of impulsiveness should not be susceptible to a
small number of such outliers. Hence, to reflect the white Gaussian nature of the dataset, the smoothness index
should be very close to 0.8455 and, as proven later, the kurtosis value for the envelope of the noise should be
close to 0.2451 (the kurtosis of the noise itself should be roughly zero), if the two criteria were both insensitive
to the outlier (out of 4000 points). The proof of the latter statement is similar to that of Eq. (35) and is
presented in the following.

As proven earlier, for a signal with no impulsive features or with extremely low signal to noise ratio, H

follows Rayleigh distribution. Substituting Eq. (34b) into Eq. (48), we have

KurtðhÞ ¼
E H4 � 4

ffiffip
2

p
H3 þ 3pH2 � 2p

ffiffip
2

p
H þ p2

4

n o
E H2 � 2

ffiffip
2

p
H þ p

2

n o2
� 3. (49)

According to Eq. (34b), EfH2g ¼ 2; EfH3g ¼ 3
ffiffiffiffiffiffiffiffi
p=2

p
and EfH4g ¼ 8. Substituting these results into

Eq. (49) yields:

KurtðhÞ ¼
8� 3p2

4

2� p
2

� �2 � 3 ¼ 0:2451.

The smoothness index calculated for the envelope signal (simulated noise plus a single outlier) was 0.8409,
very close to the expected constant 0.8455. However, this was not the case for kurtosis which was found to be
20.49 for the simulated noise plus an outlier and 77.93 for the associated envelope, substantially higher than
the anticipated levels, i.e., zero and 0.2451, respectively. We then recalculated the two indices for simulated
noise with no outliers added. The associated smoothness index of the envelope was 0.8450 but kurtosis value
reduced to �0.04 and 0.287, respectively, for the original noise and its envelope. This result clearly shows the
robustness of the proposed smoothness index and the peculiar overreaction of kurtosis to merely a single
outlier. It should be pointed out that similar high kurtosis value could be obtained from a highly impulsive
dataset without any outliers. Therefore, the kurtosis value does not necessarily represent the impulsiveness of a
signal since the high kurtosis value could mean either high impulsiveness or the existence of outliers. This will
be illustrated later in the experimental results. In addition, a few outliers generally do not reflect the true
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machinery condition and are often caused by events of random nature, e.g., certain measuring flaws, or noise
of other natures. Furthermore, as mentioned earlier in this section, the filtering algorithm guided by kurtosis
maximization tends to settle in a frequency band which leads to a time-domain result containing a few larger
data points. These large data points act like outliers and cause ambiguity.

To further compare the two criteria, we calculated the smoothness index and kurtosis values for the
simulated faulty bearing vibrations presented in Fig. 8a. They were 0.0591 for the smoothness index, 19.3 and
9.91 for the kurtosis of the simulated signal and its envelope, respectively. Obviously, the small smoothness
index value was consistent with the impulsive nature of the data. On the other hand, the kurtosis value for
such a highly impulsive signal was even lower than that of the white Gaussian noise with only one outlier
shown in Fig. 7. This once again leads us to believe that the proposed smoothness index is a more robust
criterion for fault detection and wavelet parameter selection as compared with kurtosis.

We also wish to point out that the above comparisons may not be considered conclusive. More
comprehensive studies may be needed to examine the merits of the two approaches.

3.7. Performance assessment of the proposed index using the simulated data

3.7.1. Simulated signal and noise

A considerable amount of noise is added to the simulated signal shown in Fig. 8a. The resulting signal is
shown in Fig. 8b. This signal is then wavelet transformed using Gabor wavelet at the scales corresponding to
the range 0.04FNyqpfp0.25FNyq. FNyq is one half of the sampling frequency (48,000Hz). Hence the search
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Fig. 9. (a) Measured vibration from a bearing with outer race fault [22] with added noise and (b) de-noised version of the same signal using

the parameters corresponding to minimum smoothness index.
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range is (0.04� 48,000/2, 0.25� 48,000/2) ¼ (960, 5960)Hz. This range is discretized with the step of 50Hz,
which leads to 100 frequencies, i.e., f ¼ (960, 1010, 1060, y, 3010, y, 5960Hz). The associated 100 scales are
s ¼ (50.0000, 47.5248, 45.2830, y, 15.9468, y, 8.0537). The squared shape factor is also considered over the
range 0.01ps2p1 with the step of 0.01. The real part of the wavelet coefficients corresponding to the
minimum smoothness index achieved for scale s ¼ 15.9468 and s2 ¼ 0.1 is presented as the de-noised version
of the simulated signal in Fig. 8c. As expected, the best scale corresponds to the frequency of 3010Hz which is
very close to the ringing frequency of the simulated fault impulses (3000Hz). Fig. 8d illustrates the smoothness
index found for different s�s2 combinations.
3.7.2. Real bearing signal with additional simulated noise

To assess the performance of the proposed method, we took real bearing signals sampled at 12,000Hz (with
faults on the outer and inner races) from Ref. [22] and increased the noise levels. The signal–noise mixtures are
shown in Figs. 9a and 10a. Their de-noised results are plotted in Figs. 9b and 10b, respectively. The fault
generated impulses can be clearly identified in the de-noised signal and the time interval between two
consecutive impulses matches with the characteristic fault frequencies of 107.30 and 162.18Hz for the outer
and inner race faults, respectively.
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Fig. 10. (a) Measured vibration from a bearing with inner race fault [22] with added noise and (b) de-noised version of the same signal

using the parameters corresponding to minimum smoothness index.

Fig. 11. Experimental setup.
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Fig. 12. (a) Measured vibration signal and (b) de-noising result.
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4. Experimental evaluation

The proposed method was further evaluated using the vibration data measured in our lab. The experiment
was carried out using a SpectraQuest Machinery Fault Simulator (MFK-PK5M) as shown in Fig. 11. Two
bearings (type ER10K) were used to support a two-mass rotor test kit. The two-mass rotors were well
balanced and are 200 thick, 400 in diameter and 11.1 lb each. The rotors were fitted into a 5/800 steel shaft to
provide the radial load. The simulator was driven by a 3-hp AC motor with a Hitachi controller (SJ200-
022NFU). The shaft speed was set at 1326 rev/min (22.1Hz). The left bearing has a pre-seeded single fault on
the outer race with a characteristic frequency of 67Hz ( ¼ 3.052fr). A Montronix model VS100-100
accelerometer with 100mV/g sensitivity and 1–12 kHz sensitivity range was used to measure the vibration
signal. The signal was fed to an NI AT-MIO-16DE-10 DAQ card and then collected through LabVIEW. The
signal processing was done using MATLAB on a Pentiums 4/2.52GHz PC.

Considering the fact that it may not be realistic to install an accelerometer in the near vicinity of a bearing in
an industrial setting, we mounted the accelerometer at a spot on the simulator base that is away from the
faulty bearing (Fig. 11). In addition to the rotor load, we also connected a gearbox to the driving shaft using a
belt shown on the figure to generate more interference. The vibration data were acquired at 20,000 samples/s.
A portion of the measured data is plotted in Fig. 12a and is de-noised using the proposed method. To find the
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Fig. 13. De-noising result based on maximizing the kurtosis of: (a) bandpass filtered signal and (b) envelope of the bandpass filtered signal.
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best (s�s2) combination that yields the minimum smoothness index, we searched the scale range
corresponding to the frequency interval [200, 6000]Hz and the s2 range from 0.01 to 1. The search step
lengths were 50Hz for frequency and 0.01 for s2. The best (s�s2) combination was (23.53, 0.24) corresponding
to the minimum smoothness index of 0.7467. The de-noising result associated with this (s�s2) combination is
displayed in Fig. 12b. As shown in the figure, the time interval between two consecutive impulses is about
0.015 s which precisely reflects the fault characteristic frequency 67Hz as mentioned above.

For comparison, the scale and shape factor were also selected by maximizing the kurtosis value calculated
for both the filtered signal and its envelope. The (s�s2) combinations associated with the maximum kurtosis of
the filtered signal (6.67) and that of the envelope (8.8151) were (6.55, 0.96) and (6.55, 0.5), respectively. The
de-noising results corresponding to the two (s�s2) combinations are shown in Figs. 13a and b. While some
impulsive features can be seen from both results, no periodic component reflecting the fault characteristic
frequency of the bearing could be detected. This result shows that the kurtosis maximization criterion has led
the selection process to a wrong frequency band of the vibration signal.

5. Conclusion

A smoothness index-guided search approach has been proposed to find the best combination of wavelet
scale and shape factor and hence the best Gabor daughter wavelet for de-noising impulsive signals. In this
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study, we have proven that the smoothness index value approaches 0.8455 for data without impulse
components or with extremely low signal to noise ratio. We have also shown that the smoothness index value
decreases if a proper combination of wavelet scale and shape factor is selected. The proposed method has been
tested using both simulated and experimental data. All our tests have shown that the proposed method can
provide very reliable de-noising results.
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